Hölder's inequality

Let 1p+1q=1\frac{1}{p}+\frac{1}{q} = 1, with p,q>1p,q >1, then fg1fpgq\|fg\|_{1}\leq \|f\|_{p}\|g\|_{q} more generally for sums, k=1n|akbk|(k=1n|ak|p)1/p(k=1n|bk|q)1/q\sum_{k=1}^n \lvert a_k b_k \rvert \leq \left( \sum_{k=1}^n \lvert a_k \rvert^p \right)^{1/p} \left( \sum_{k=1}^n \lvert b_k \rvert^q \right)^{1/q} with equality when |bk|=c|ak|p1\lvert b_k \rvert = c \lvert a_k \rvert^{p-1}. p=q=2p=q=2 yields Cauchy's inequality.

For integrals, ab|f(x)g(x)|dx[ab|f(x)|pdx]1/p[ab|g(x)|qdx]1/q\int_a^b \lvert f(x) g(x) \rvert dx \leq \left[ \int_a^b \lvert f(x) \rvert^p dx \right]^{1/p} \left[ \int_a^b \lvert g(x) \rvert^q dx \right]^{1/q} with equality when |g(x)|=c|f(x)|p1\lvert g(x) \rvert = c \lvert f(x) \rvert^{p-1}. p=q=2p=q=2 yields Schwarz's inequality


For vector pp-norms: the dual of the p\ell_p norm is the q\ell_q norm. e.g. dual of 2\ell_2 norm is 2\ell_2 norm, dual of 1\ell_1 norm is \ell_\infty norm.


See also: Jensen’s inequality (note that Hölder's inequality can be derived from this)


References

  1. https://mathworld.wolfram.com/HoeldersInequalities.html
  2. https://math.stackexchange.com/questions/211633/h%C3%B6lder-inequality-from-jensen-inequality
  3. https://artofproblemsolving.com/wiki/index.php/H%C3%B6lder%27s_Inequality
  4. https://en.wikipedia.org/wiki/H%C3%B6lder%27s_inequality